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A generalized optical fiber system with three variable coefficient functions is investigated, which is modelled as a nonlinear 
Schrödinger equation with variable gain coefficient, variable dispersion coefficient and variable nonlinearity coefficient. An 
analytic soliton solution and its compatible condition are derived via using the auxiliary equation method. Through 
appropriately setting the coefficient functions as specific functions, five types of backgrounds are studied, namely, plain, 
upper-arch, downward-arch, trapezium and periodic wave backgrounds. The results reveal the new characteristics for the 
optical fiber system and contribute to a better understanding to the optical propagation background. 
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1. Introduction 
 
Optical soliton and soliton theory take a critical part 

optical information and optical telecommunication [1-3]. 
A lot of attention and effort have been drawn to the study 
on optical solitons, and the results have been becoming 
more and more abundant [4-18]. 

In general, optical solitons may be generated 
because of a delicate balance between group velocity 
dispersion (GVD) and nonlinear effects [19]. Some 
studies on solitons have been carried out both 
theoretically and experimentally [20-25]. Analytic soliton 
solutions have been investigated [26], and nonlinear 
optics models giving rise to the appearance of solitons in 
a narrow sense have been considered [27].  

The ubiquitous nonlinear Schrödinger equation 
(NLSE) is one of the most fundamental mathematical 
models to describe many nonlinear phenomena, 
especially in optical pulse propagation in nonlinear 
optical fiber system [1-3]. In Ref. [28], soliton evolution 
was considered which is driven by random polarization 
mode dispersion. Under some parametric conditions, 
solitons were obtained for a higher-order NLSE with 
non-Kerr nonlinearity in Ref. [29], and the interaction 
dynamics of solitons was reconsidered in Ref. [30].  

Due to the practical applications, the factors that 
affect the system are very complicated. These real factors 
often produce fiber gain/loss, phase modulation and 
variable dispersion. The variable coefficient nonlinear 
Schrödinger equation (vcNLSEs) is becoming a class of 
effective models to describe the inhomogeneous effects 
of optical pulse propagations in nonlinear media. The 

vcNLSEs permit to reveal more abundant optical pulse 
propagation characteristics under various conditions and 
complex environments, such as varying GVD, Kerr 
nonlinearity and system gain/loss [1-3, 31-37]. 

Unlike constant coefficient nonlinear Schrödinger 
equations (ccNLSEs), the studies on vcNLSEs show that 
one can excite and control the soliton structures and 
propagation backgrounds through their inhomogeneity 
parameters. Even though identifying and controlling the 
solitons in vcNLSE systems have been investigated by 
several authors [35-37]. There are still a great amount of 
unknown and valuable problems to be explored for the 
vcNLSEs. 

In this paper, we discuss the following vcNLSE 
system 

2( )
( ) ( ) ,

2z

D z
u i u i z u u g z u                   (1) 

where ( , )u z   is the envelope of optical pulse 
waveguides, z is the longitudinal coordinate, τ is the 
time in the moving coordinate system, i represents the 
unit complex number. D(z) is the GVD coefficient, ρ(z) is 
the nonlinearity coefficient, and g(z) is the system 
gain/loss coefficient. The system (1) can well describe 
the propagation of the picosecond optical pulse in 
inhomogeneous optical fiber systems [38]. 

 The optical soliton amplification and its condition 
are studied in Refs. [39, 40]. The single-soliton and 
double-soliton were obtained by bilinear method, and 
some controls on the soliton dynamics have explored 
using GVD and gain coefficients [41,42]. Gaussian rogue 
waves are studied through similarity transformation 
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method [43]. 
In this paper, we will seek for the generalized soliton 

solution to the sytem (1) by the auxiliary equation 
method, namely, the generalized (G’/G)-expansion 
method. Through choosing different gain coefficients, we 
discuss six types of soliton propagation backgrounds.  

 
 
2. Analytic soliton solution to the system (1) 
 
The solution comprising free functions is called as 

generalized solution, which is the basis to construct rich 
solitons [44]. The (G’/G)-expansion method was 
proposed to solve nonlinear evolution equation (NLEE) 
by Wang [45]. It is an effective tool to obtain soliton 
solution for NLEE [46], and has been expanded to solve 
generalized soliton solution [47, 48]. Here we will apply 
the (G’/G)-expansion method to construct the general 
analytic soliton solution to the system (1). 

We first separate ( , )u z   in the system (1) into real 
part and imaginary part, namely, 

 
( , ) ( , ) ( , ),u z p z iq z                 (2) 

 

where ( , )p z   and ( , )q z   are real functions for 

variable x and τ. Then it follows 

 
, , ,z z zu p iq u p iq u p iq              (3) 

2 22 2 2 2 2 2, ( ) ( ) .u p q u u p q p i p q q         (4) 

Substituting (4) into the system (1) yields 
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 According to the generalized (G’/G)-expansion 
method, we are able to assume 

 

 

0

0

( , ) ( ) / , ( ) 0,

( , ) ( ) / , ( ) 0,

n
k

k n
k

m
j

j m
j

p z a z G G a z

q z b z G G b z









 








 






       (6) 

 
where ( ), ( ) ( 0,1,2, , , 0,1, 2, , )k ja z b z k n j m L L  are 
the functions of z , ( )G G   satisfies the following 
ordinary differential equation 
 

( ) ( ) ( ) 0,G G G                    (7) 

 
where ξ = ξ(z,τ), λ and μ are arbitrary constants. 

Applying the homogeneous balance principle to Eqs. 
(5), we have n = m = 1 Thus the solutions of Eq. (5) can 
be written as 

 
 

0 1
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( , ) ( ) ( ) /
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
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          (8) 

where a0j, a1j, b0j, b1j (j = 1,2) are all functions to be 
determined later. To simplify computation, we consider 
ξ(z,τ) = f(z) + g(z). Substituting (8) into (6), collecting the 
term of (G’/G) with the same power, then letting each 
coefficient to be zero will yield a set of over-determined 
partial differential equations about the parameters a0j, a1j, 
b0j, b1j (j = 1,2)  and ξ(z,τ).Solving the set of equations, 
and setting λ = 0, we get the modulus square soltion 
solutions to the system (1) 

   2 ( )2 22 2 ' e ,/
g z dz

G Gu l d          (9) 

where 
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with 2( , ) ( ) ,z dl D z dz l k       1 2, , , , , ,C C d l   are 
real constants, and C1 ≠ C2, d ≠ 0, l ≠ 0, δ = sqrt(-μ), μ<0, 
and compatible condition  

2 ( )
( ) ( )e ,

g z dz
D z z                    (10) 

where d, l and ε are non-zero real constants, k is an 
integral constant.  
 
 

3. Soliton propagation backgrounds to the  
  system (1) 
 
In virtue of the free functions ( )D z and ( )g z in the 

soliton solutions (9), it is convenient to explore and 
observe the soliton propagation patterns. The groups of 
D(z) and g(z) are extremely rich, this admits ones to 
excite abundant soliton structures through setting these 
functions. A furthermore analysis illustrates that ( )g z can 
determines the soliton propagation backgrounds. In this 
work, our main task will focus on the gain/loss function 
g(z). We discuss six types of backgrounds by choosing 
different g(z) and fixing D(z) as 

 
( ) 3 .D z z               (11) 

 
3.1. The plain background 
 
As a special case, we easily get a standard optical 

dark soliton with the plain background as g(z) = 0, where 
it means that the gain/loss function is not considered for 
the system. Different parameters can determine the 
direction and amplitude (see Fig. 1). 

 
3.2. The upper arch background 
  
If we set the gain/loss function g(z) as a linear 

function 
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( ) ,g z cz                (12) 

 
where c is a constant, the system (1) holds the upper arch 
background where the optical soliton will separate the 
arch background into two parts. The parameter c in (12) 
can control the open width of the arch. The effect is 
demonstrated in Fig. 2.  

 
3.3. The downward arch background 
 
When setting the gain/loss function g(z) as 

hyperbolic function 
 

1 2 2 2( ) 2 tanh( )sech( ),g z c c c z c z      (13) 

 
where c1 and c2 are arbitrary constants, the system (1) 
will possess the downward arch background. Similar to 
the soliton with the upper arch background in the 
subsection 3.2, the downward arch background will 
separate the soliton into two parts. The parameters c1 and 
c2 in (13) can tune the open width of the arch. We 
illustrate the effect in Fig. 3.

 

 

 

Fig. 1. The soliton propagation with the plain background. The settings are following (11), g(z) = 0, C1 = 2, C1 = 1, k = 0.2, d 
= 0.3, the indefinite integral constant in (9) is taken as 1, and (a) l = -1, μ = -1; (b) l = 1, μ = -0.1. 

 

 
 

Fig. 2. The soliton propagation with the upper arch background. The settings are following (11), (12), C1 = 2, C1 = 1, k = 0.2, 
d = 0.3, l = 1, μ = -1, the indefinite integral constant in (9) is taken as 0, and (a) c = 0.01; (b) c = 0.05. 

 

 
Fig. 3. The soliton propagation with the downward arch background. The settings are following (11), (13), C1 = 2, C1 = 1, k = 

0.2, d = 0.3, l = 1, μ = -1, the indefinite integral constant in (10) is taken as 0, and (a) c1 = 5,c2 = 0.2; (b) c1 = 1,c2 = 1. 
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3.4. The trapezium background 
 

When setting g(z) as hyperbolic function 

2
1 2( ) sech ( ),g z c c z           (14) 

where c1 and c2 are arbitrary constants, the system (1) 
holds the trapezium background. The parameter c1 can 
determine the trapezium direction, and c2 can tune the 
slope rate and the amplitude of the trapezium (see Fig. 4.) 

 

 

 
Fig. 4. The soliton propagation with the trapezium background. The settings are following (11), (14), C1 = 2, C1 = 1, k = 0.2, 

d = 0.3, l = 1, μ = -1, the indefinite integral constant in (9) is taken as 0, and (a) c1 = 0.2, c2 = 0.4; (b) c1 = -0.2, c2 = 1. 
 
3.5. The periodic wave background 
 
Through setting g(z) as trigonometric sine function 
 

1 2( ) sin( ),g z c c z           (15) 

where c1 and c2 are arbitrary constants, the system (1) 
holds the periodic wave background. The parameter c1 
can determine the amplitude, and c2 can tune the intensity 
of the periodic waves (see Fig. 5.) 

 

 

Fig. 5. The soliton propagation with the periodic wave background. The settings are following (11), (15), C1 = 2, C1 = 1, k = 
0.2, d = 0.3, l = 1, μ = -1, the indefinite integral constant in (9) is taken as 0, and (a) c1 = 0.05, c2 = 1.5; (b) c1 = 1.1, c2 = 0.5. 
 
 
4. Conclusions 
 
The system (1) is an important optical soliton 

propagation model with variable variable gain coefficient, 
variable dispersion coefficient and variable nonlinearity 
coefficient. The system can be used to describe the 
complex optical fiber environment. More exploration for 

the system can help us to deeply understand the 
characteristics of optical soliton in nonlinear fiber. 

Applying a class of auxiliary equation method, 
namely, the generalized (G’/G)-expansion method, we 
obtain the generalized optical soliton solution and its 
compatible condition to the system (1). There are two 
free functions among the GVD, nonlinearity and 
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gain/loss coefficient functions. It is fundamental to 
explore new optical soliton propagation properties. 

We discuss the five types of soliton propagation 
backgrounds through choosing the gain/loss function in 
the system (1), namely, plain, upper arch, downward arch, 
trapezium and periodic wave backgrounds. All types are 
illustrated graphically. Specially, as gain/loss function is 
zero, we get a standard dark optical soliton with the plain 
background, which is often reported in various fiber 
system. The other four types of soliton in this work are 
novel and interesting.  

In this article, a few typical functions are only 
chosen to discuss different backgrounds. In fact, it is easy 
to see that one can explore more abundant backgrounds 
by the way in this work. In addition, ones are able to 
choose arbitrary two of these three coefficient functions 
to investigate more soliton features. 

We hope that the results here may be helpful to 
inspire new ideas in optical soliton theory, experiment, 
optical communication engineering in future. 
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